首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
安全科学   1篇
废物处理   2篇
环保管理   12篇
综合类   4篇
基础理论   25篇
污染及防治   18篇
评价与监测   1篇
社会与环境   1篇
灾害及防治   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2015年   4篇
  2013年   6篇
  2012年   1篇
  2011年   6篇
  2010年   11篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有65条查询结果,搜索用时 46 毫秒
11.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   
12.
Freshly harvested cells of Phaeodactylum tricornutum Bohlin grown with nitrate, ammonium or lysine as a sole nitrogen source had a low ability to take up lysine or arginine, but this ability increased when cells were deprived, over 48 h, of either nitrogen or carbon. The effects of nitrogen and carbon deprivation were additive, and the uptake ability was greatest in cells incubated in darkness in nitrogen-free medium. Uptake ability increased in cells illuminated in the presence of 10-5 M 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) an inhibitor of photosynthetic electron transport. An inverse relationship between rate of development of the uptake system and rate of photosynthesis was also established. Development of the uptake system was prevented by cycloheximide or by anaerobiosis. Following transfer to a normal nitrate medium, illuminated cells lost the lysineuptake system by dilution as the cells grew. There was a linear and positive correlation between the initial rate of uptake of lysine and the maximum concentration which was maintained in the cells when equilibrium was reached, indicating that transinhibition of lysine uptake may occur and that the extent of this inhibition is related to the size of the internal amino acid pool. The relevance of the findings to the growth of phytoplankton in natural waters is discussed.  相似文献   
13.
An ingestion-based prey selectivity function (IS) is described specifically to aid the simulation of zooplankton activity in circumstances in which selectivity varies, for example, as functions of prey palatability or abundance. In IS, the ultimate control of the rate of predation is not the external concentration of prey but the total rate of prey capture relative to predator demand. Further, “preference” is not an input (as it is for most prey selection functions) so that the selection or deselection of any or all prey can be freely altered. Hence, if required, all prey could be deselected, or the impact of inert materials or turbulence adversely affecting capture rates of any or all prey can be considered. Capture kinetics are not fixed at a common value for all items. In its basic form IS contains no more variables than other selectivity functions. The construction and use of switches to vary grazing in response to changes in abundance of alternative prey types or in prey nutritional (stoichiometric) quality is demonstrated. The advantages of using IS instead of the widely used ratio-based selectivity function is demonstrated with reference to model fits to experimental datasets for microzooplankton activity.  相似文献   
14.
Antimony bioavailability in mine soils   总被引:5,自引:0,他引:5  
Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg(-1), indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk.  相似文献   
15.
A toxic axenic strain of Alexandrium fundyense is shown to be capable of removing dissolved free amino acids (DFAAs) until concentrations are similar (low nM) to those found in natural waters. Uptake is greatest during exponential growth, rather than during C and/or N-stress as is usual in diatoms and other flagellates. A wide range of amino acids can be taken up, their concentration being decreased within a few hours to the levels observed prior to DFAA addition. The maximum rate of DFAA-N uptake, during early exponential phase, was 0.8 pmol-N cell−1 h−1, equivalent to ≃20% of the total N requirement. More typically, the contribution of DFAA-N was only ≃5%. However, these uptake rates are not sustainable. It is apparent that this organism cannot use amino-N to support significant growth, even though it can take up DFAAs. This, and the fact that the composition of the internal amino acid pool differed from that externally, is further evidence that the N-physiology of this genus is abnormal (differences to other dinoflagellates include an abnormally high concentration of glutamine and arginine, an effective absence of amine X, and release of nitrite during the␣concurrent assimilation of nitrate and ammonium in␣darkness). There is no evidence that the use of DFAAs enhance toxin content, except when cells are supplied with very high (unnatural) concentrations of arginine. Received: 8 May 1989 / Accepted: 14 September 1998  相似文献   
16.
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.  相似文献   
17.
In this study, water quality and basin characteristics data from different basins of the Fish River basin, Baldwin County, Alabama, were used to develop a valuation model. This valuation model is based on the effectiveness of “contributing zones” identified and delineated using methods described by Basnyat and others (Environmental Management]1999] 23(4):539–549). The “contributing zone” delineation model suggests that depending on soil permeability, soil moisture, depth to water table, slope, and vegetation, buffer widths varying from 16 m to 104 m must be maintained to assimilate or detain more than 90% of the nitrate passing through the buffers. The economic model suggests the value of retiring lands (to create the buffers) varies from $0 to $3067 per ha, depending on the types of crops currently grown. The total value of retiring all areas identified by the contributing zone model is $1,125,639 for the study area. This land value will then form the basis for estimates of the costs of land management options for improving (or maintaining) water quality throughout the study area.  相似文献   
18.
The problem of selecting a pesticide application strategy in the face of increasing resistance to the pesticide in the pest population is dealt with. The grower in this situation may do better by sacrificing a portion of the present crop in return for a reduced resistance to future applications. The model presented represents an attempt to forge a compromise between excessive complexity, rendering the model difficult to study, and excessive simplicity, rendering the model useless. The effects of timing of the application of the pesticide within the season are discussed. The principle conclusions are the following: (i) If immigration of pests from refugia is significant then proper timing of the application of pesticide may be used to help alleviate resistance growth. (ii) Resistance growth may best be reduced by spraying earlier than what would otherwise be the best time. (iii) The value of the discount rate (and of the time horizon) has a profound effect on the nature of the optimal policy.  相似文献   
19.
Sorption of organic contaminants to soils has been shown to limit bioavailability and biodegradation in some systems. Use of surfactants has been proposed to reverse this effect. In this study, the effects of a high organic carbon content soil and a nonionic surfactant (Triton X-100) on the reductive dechlorination of carbon tetrachloride (CCl4) were examined in anaerobic systems containing Shewanella putrefaciens. Although more than 70% of the added CCl4 was sorbed to the soil phase in these systems, the reductive dechlorination of CCl4 was not diminished. Rather, rates of CCl4 dechlorination in systems containing soil were enhanced relative to systems containing non-sorptive sand slurries. This enhancement was also observed in sterile soil slurries to which a chemical reductant, dithiothreitol was added. It appears that the organic soil used in these experiments contains some catalytic factor capable of transforming CCl4 in the presence of an appropriate chemical or microbial reductant. The addition of Triton X-100 to sand and soil slurries containing S. putrefaciens resulted in increased CCl4 degradation in both systems. The effect of Triton could not be explained by: (i) surfactant induced changes in the distribution of CCl4, (i.e. decreased sorption) or the rate of CCl4 desorption; (ii) a direct reaction between Triton and CCl4; or (iii) increased cell numbers resulting from use of the surfactant as a substrate. Rather, it appears that Triton X-100 addition resulted in lysis of bacterial cells, a release of biochemical reductant, and enhanced reductive transformation of CCl4. These results provide insights to guide the development of more effective direct or indirect bioremediation strategies.  相似文献   
20.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号